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SUMMARY

Nonlinear singular vectors (NSVs) of a Jovian atmosphere model are obtained numerically in this paper.
NSVs are the initial perturbation, whose nonlinear evolution attains the maximal value of the cost function,
which is constructed according to the physical problem of interest. The results demonstrate that the motions
of Jupiter’s atmosphere is relatively stable under some assumptions. Copyright q 2007 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

In the solar system, motions in the planetary atmospheres are mainly divided into two kinds
of problems: the terrestrial problem and the Jovian problem. Earth’s atmospheric motion and
Jupiter’s atmospheric motion are the typical representatives of these problems. Major factors that
contribute to the complexity of Earth’s weather are its irregular mountain ranges and the fact that
the atmospheric eddies and the planet are comparable in size. In contrast, Jupiter’s atmosphere
comes pre-idealized, since there are no mountain ranges, air–sea interfaces, and surface drag,
or surface temperature gradients [1]. Ever since Galileo discovered spots on the sun by telescope
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in 1609, the study of motion in planetary atmospheres has attracted significant attention. There
are no continents or oceans to interfere with the flow of gas in Jupiter’s atmosphere. Jupiter’s
atmospheric motions, which depend on different scales, display different forms, such as turbulence
on the smaller scale and steady zonal currents on the larger scale, while the Great Red Spot on
intermediate scales. Because of their vastly different scales, the various phenomena probably lie
in different dynamic regimes [2]. There has been many significant previous research about the
motion in planetary atmospheres, including Jupiter ([3–5] and their references) and many models
have been proposed to explain the motion of Jupiter and Earth ([6–8] and their references). Further
understanding of planetary motions and improvement in predictability of planetary atmospheres
are of continuing interest [9, 10]. A more detailed statement of the current understanding in this
area can be found in Majda and Wang [3].

Predictability and sensitivity of atmospheric motions are the central problems in both theoretical
and numerical research of atmospheric science. One approach to attack these problems is to
investigate the evolution of initial perturbations, which usually represent the initial uncertainties.
The fast growing initial perturbations have the largest impact on the uncertainties of prediction,
and often play a dominant role in the variation of motions. Determination of the fastest growing
initial perturbations has been an important issue since the work of Lorenz [11]. After Lorenz, a
series of works, such as Farrell [12], Buizza and Palmer [13], Tziperman and Ioannou [14] and
Frederiksen [15, 16], allowed mathematical and atmospheric researchers to recognize the value and
applicability of linear singular vector (LSV) in meteorology and physical oceanography. The linear
approach assumes that the initial perturbation is sufficiently small such that its evolution can be
governed approximately by the tangent linear model of the nonlinear model and the computation
of the (linear) fastest growing perturbation is reduced to the calculation of LSV. However, it is
well known that the motion of the atmosphere or the ocean is governed by complicated nonlinear
systems. In order to reveal the essential nonlinear character of the motion of the atmosphere and
ocean, a new concept of nonlinear singular vector (NSV) was proposed by Mu [17], which is a
natural generalization to the classical LSV.

In this paper, the NSVs of a nonlinear, quasigeostrophic, barotropic, model of Jupiter’s and
Earth’s atmosphere is obtained by solving a numerical nonlinear optimization problem, which
provides a step towards the application of NSV to the more general and realistic model in studying
Jupiter’s and Earth’s atmospheric motions. The main goal of this paper is that we treat only the
simplest dynamical problems, using them as a test of the new and complicated method. On Jupiter,
the typical wind speed U is 100m s−1 and typical length scale L is about 10 000 km, we may
consider it is reasonable for larger scale. The gravitational acceleration g is 26m s−2. On Earth,
both U and L are 10m s−1 and 1000 km, respectively, and g is about 9.8m s−2. In a later paper,
we will apply the framework to a three-dimensional nonlinear primitive equation model.

This paper is organized as follows. In Section 2, the model and the concept of NSV are described.
In Section 3, a numerical experiment is presented.

2. THE MODEL AND THE NSV

We consider the following non-dimensional, two-dimensional, quasigeostrophic model:

�P
�t

+ �(�, P) = f
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P = �2� − F� + f0 + f0
H
hs in � × [0, T ]

�|t=0 = �0 (1)

where P is the potential vorticity, � is the stream function, f is the external forcing, f0 is the
Coriolis parameter, H is the characteristic depth and hs is the topography. F is the planetary
Froude number:

F =
(

L

LR

)2

= f 20 L
2

gH(1 − �1/�2)

where LR is the Rossby deformation radius, L is the length scale, and �1 and �2 are the density of the
upper and lower atmosphere, respectively (�1<�2). The Jacobian operator �(�, P) = �x Py−�y Px .
�= [0, X ] × [0, Y ] with double periodic boundary conditions, which may be considered to be
reasonable for large scale. The beta effect is also neglected because we consider the simplest the-
oretical model which is mathematically tractable. For fixed T>0 and initial condition �|t=0 = �0,
the propagator M is well defined, i.e. �(x, y, T ) = M(�0) is the solution of (1) at time T [18].

Let �T and �T + �N be the solutions of (1) with initial value �0 and �0 + �0, i.e.

�T = M(�0), �T + �N = M(�0 + �0) (2)

Energy norm is widely employed [19–21] in the study of predictability, which is defined as

‖�‖2 =
∫

�
(|��|2 + F |�|2) dx dy (3)

where � is the stream function.
The nonlinear optimal perturbation �∗

0 is the maximum of the functional J (�0), i.e.

J (�∗
0) = max J (�0) (4)

where

J (�0) = ‖M(�0 + �0) − M(�0)‖
‖�0‖

= ‖�N‖
‖�0‖

(5)

and �N presents the nonlinear evolution of the initial perturbation �0.
To calculate the nonlinear optimal perturbation, we consider

J1(�0) = [J (�0)]2 = ‖M(�0 + �0) − M(�0)‖2
‖�0‖2

(6)

Obviously,

J1(�
∗
0) = max J1(�0) (7)

To capture the maximum of J1(�0), we calculate the minimum of

J2(�0) = 1

J1(�0)
= ‖�0‖2

‖M(�0 + �0) − M(�0)‖2 (8)
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The first variation of J2(�0) is

�J2(�0) = 2((−�2 + F)�0, ��0)‖M(�0 + �0) − M(�0)‖2
‖M(�0 + �0) − M(�0)‖4

− ((−�2 + F)(M(�0 + �0) − M(�0)),M(�0 + �0)��0)‖�0‖2
‖M(�0 + �0) − M(�0)‖4 (9)

where M(�0 + �0) is the tangent linear approximation of propagator M at �0 + �0.
Let M∗ be the adjoint operator of M, we have

�J2(�0) = 2((−�2 + F)�0, ��0)‖M(�0 + �0) − M(�0)‖2
‖M(�0 + �0) − M(�0)‖4

− (M∗(�0 + �0)(−�2 + F)(M(�0 + �0) − M(�0)), ��0)‖�0‖2
‖M(�0 + �0) − M(�0)‖4 (10)

Determination of the NSVs of models for the atmospheric dynamics, usually result in nonlinear
optimization problems of high dimension. It is too difficult to obtain analytical solutions, hence
we adopt a numerical approach. To obtain the nonlinear optimal perturbation numerically, the
discretization of the operator M is carried out. In our numerical approach, the Arakawa finite
difference scheme [22] is used to discretize the Jacobian operator. The temporal discretization is
carried out by using a second-order Adams–Bashforth scheme, which damp the computational
mod [23], and the stream function � is treated as an unknown term, and the potential vorticity
P is calculated by using the second equation of (1). The familiar five-point difference scheme is
employed to discretize the Laplacian operator.

The limited memory BFGS method, which is an extension of the conjugate gradient method,
is used to solve our optimization problem. This method is suitable for large-scale optimization
problems because the amount of storage required by the algorithm and thus the cost of the iteration
can be controlled by the user. In the research of data assimilation and numerical weather forecast
and physical oceanography, this method has been successfully applied for solving the related
optimization problems with higher dimensions. The detailed description of this algorithm can be
found in Dong and Nocedal [24].

3. NUMERICAL RESULTS

Jupiter is the largest planet in the solar system, much larger than Earth, and is mostly made of
hydrogen. Its radius is 71 492 km, rotation period is about 9.92 Earth hours. For mathematical sim-
plicity, we take f = 0 and neglect the beta effect. Our numerical results are not sensitive to changes
several times in Froude number. We choose randomly the initial perturbations and make the size of
perturbation within several times of energy norm of basic state in the computational process. If the
size is too large, this will lose physical meanings. In this section, we take the Jupiter space domain
�= [0, 6.4]× [0, 3.2], which corresponds to the dimensional case [0, 64 000 km] × [0, 32 000 km].
The model parameters in non-dimensional form are chosen as follows: F = 0.2584, f0 = 10.
Because there are liquid state and no mountain ranges on the surface of Jupiter, the topographs
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Table I. The nonlinear evolutions of NSV and NSV for 1, 3, 7, and 10 Jupiter days, respectively.

1 Jupiter days 3 Jupiter days 7 Jupiter days 10 Jupiter days

‖�∗
0‖ 2.2705E − 2 8.6043E − 3 1.7316E − 3 2.3765 8.5080E − 4 2.7061

‖�N ‖ 6.2088E − 2 5.1723E − 2 2.1808E − 2 6.3976 2.3942E − 2 6.8546

hs = 0 for the Jovian case. The space step d = 0.2 corresponding to a dimensional length of 2000 km
and the time step dt = 0.006 corresponding to t = 10 Earth minutes.

The experiment is for the basic flow �0 = 1.0× (sin(2�y/3.2)+ 0.25). The energy norm of the
basic flow is ‖�0‖= 6.4769. T = 59, 177, 413 and 590 (corresponding to 1, 3, 7, and 10 Jupiter
days) are the time steps of Jupiter, respectively. We use the NSV method to calculate the nonlinear
fastest growing perturbation, the detail results are demonstrated in the Table I.

The numerical results of 1, 3, 7 and 10 Jupiter days are summarized in Table I. ‖�0‖, ‖�∗
0‖, and‖�N‖, are presented in Table I, where ‖�∗

0‖ and ‖�N‖ are the energy norm of NSV and the norms
of nonlinear evolution of NSV, respectively. ‖�N‖ is obtained by integrating the nonlinear model
with NSV as initial values. The initial perturbations are chosen randomly, but their energy norms
are not greater than several times of that of the basic state. In fact, if the initial perturbations are
too large, they will lose physical meaning. We find one global maxima of functional J (�0) for 1
and 3 Jupiter days and one global and one local maxima of functional J (�0) for 7 and 10 Jupiter
days, respectively. It follows from Table I that the nonlinear evolutions of global nonlinear optimal
perturbations (GNOPs) �∗

0 are 6.2088E− 2, 5.1723E− 2, 2.1808E− 2 and 2.3942E− 2 for 1, 3,
7, 10 Jupiter days, respectively. With the time increasing from 1 to 10 Jupiter days, the nonlinear
evolution of NSV �∗

0 are on the same order of magnitude. On the other hand, the nonlinear
evolution of the local nonlinear optimal perturbations (LNOPs) �∗

0 for 7 and 10 Jupiter days are
6.3976 and 6.8546, respectively. We find that LNOP plays a more important role than the GNOP;
this result is the same as the results in Mu and Wang [25]. From 7 to 10 Jupiter days, the nonlinear
evolution of LNOPs are 6.3976 and 6.8546, and there is not a remarkable difference between
LNOP for 7 and 10 Jupiter days. These results imply that the motion of Jupiter’s atmosphere is
relatively stable under the given assumptions. In the following contour figures, we used three types
of contour lines: solid, dotted and dashed to distinguish positive, zero, and negative contour values.

Figure 1(a) and (b) are NSVs for 1 and 3 Jupiter days, respectively. Figure 1 shows the case
of short time. Figure 2(a) and (b) are NSVs for 7 and 10 Jupiter days, respectively. The case of
long time is shown in Figure 2. It is clear from Figure 1 that there are no remarkable differences
between the case of 1 and 3 Jupiter days. The characteristics of NSV for the case of 7 and 10
Jupiter days are similar with that of the case of 1 and 3 Jupiter days. Both Figures 1 and 2 show
that almost the same initial perturbation reach the maximum evolution after 1 and 3 Jupiter days,
and 7 and 10 Jupiter days, respectively. This indicates that the Jovian atmosphere is relatively
stable. It is worthwhile to point out that in the nonlinear case, there exists a local maximum due
to the nonlinearity. Now that LNOPs play a more important role in the study of predictability. We
show that evolutions of LNOP for 7 Jupiter days and LNOP for 10 Jupiter days in Figure 3. We
also find that there is not a significant difference between LNOPs for 7 Jupiter days and 10 Jupiter
days. Furthermore, this implies that the Jovian atmosphere is relatively stable.

In order to compare the difference between two atmospheric motion, we also give the numerical
results for the Earth. The experiment for the Earth is for the basic flow �0 = 1.0× (sin(2�y/3.2)+
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(a) (b)

Figure 1. Results of nonlinear singular vector for different Jupiter days: (a) NSV with energy norm
2.2705E − 2 for 1 Jupiter day and (b) NSV with 8.6043E − 3 for 3 Jupiter days. The interval values of

contour in (a) and (b) are 8.0E − 5 and 4.75E − 5, respectively.

(a) (b)

Figure 2. Results of nonlinear singular vector for different Jupiter days: (a) NSV with energy norm
1.7316E − 3 for 7 Jupiter days and (b) NSV with 8.5080E − 4 for 10 Jupiter days. The interval values

of contour in (a) and (b) are 2.0E − 5 and 2.4E − 6, respectively.

0.25) which is the same as the case of Jupiter. The Earth topography hs = 1.0× sin(2�y/3.2),
1/H = 0.35. The parameter F = 0.1, the other parameters for Earth and Jupiter are the same as
given above. The energy norm of the basic flow is ‖�0‖ = 6.4769.

T = 720 (corresponding to 5 Earth days) are the time steps of Earth and Jupiter. We use the
nonlinear optimal perturbation method to calculate the NSV, the detailed results are demonstrated
in the Table II.

In Table II, there are local nonlinear optimal perturbations in the case of Earth or Jupiter because
of nonlinearity. The growth rates �E for Earth vary considerably from 9.1173 to 5.4667, but the
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(a) (b)

Figure 3. Results of LNOP for different Jupiter days: (a) evolution of LNOP with energy norm 2.3765
for 7 Jupiter days and (b) evolution of LNOP with 2.7061 for 10 Jupiter days. The interval values of

contour in (a) and (b) are 0.3 and 0.4, respectively.

Table II. The comparison of growth rates between Jupiter
and Earth for 5 Earth days.

i = 1 i = 2 i = 3 i = 4

Earth
�iE 9.1173 7.4032 5.4667 —
‖�∗

0‖ 2.986E − 4 9.651E − 1 1.5643 —
Jupiter

‖�∗
0‖ 1.56E − 4 8.976E − 1 1.4269 2.5063

�iJ 6.2049 6.1097 6.1340 5.9889

growth rates �J for Jupiter are almost constant and only change from 6.2049 to 5.9889. This implies
that Earth’s atmosphere motion is more unstable than Jupiter’s.

Local nonlinear optimal perturbations for the Earth and Jupiter are presented in Figure 4.
Figure 4(a) and (b) are the LNOPs with ‖�0‖= 9.651E − 1 and 1.5643 in the case of Earth,
respectively. There are remarkable differences between Figure 4(a) and (b). The LNOPs with
‖�0‖ = 8.976E−1 and 1.4269 in the case of Jupiter are shown in Figure 4(c) and (d), respectively,
but they are very similar.

It is well known that Earth’s atmosphere receives more energy per unit area than any other
planetary atmosphere, and yet has the weakest winds in the solar system [1]. Mu and Zhang [26]
demonstrate that we should consider the nonlinear effects in the study of atmospheric and oceanic
motions. Although the statement is based on the somewhat artificial assumption of the model,
this may not present the realistic status of Jupiter’s atmosphere. However, the test results coincide
with some of the ones in Williams [27] and Conrath et al. [5]. In particular, the application of the
NSV method to the theoretical model of motion in Jupiter’s and Earth’s atmosphere may provide
an opportunity to better understand the motions of Jupiter’s and Earth’s atmosphere. A nonlinear
optimal perturbation method was used to investigate the Jovian atmosphere, and make a comparison
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(a) (b)

(c) (d)

Figure 4. Results of LNOP for Earth and Jupiter: (a) LNOP for Earth with energy norm 9.651E − 1 for
5 Earth days; (b) LNOP for Earth with 1.5643 for 5 Earth days; (c) LNOP for Jupiter with energy norm
8.976E − 1 for 5 Earth days; (d) LNOP for Jupiter with 1.4269 for 5 Earth days. The interval values of

contour in the figures (a)–(d) are 0.002, 0.00375, 0.0095 and 0.011, respectively.

with Earth’s atmosphere. This is an indication that the terrestrial problem is complicated. Major
factors that contribute to the complexity of Earth’s weather are its irregular boundary conditions,
i.e. its mountain ranges. This motivates the further investigation of the complex dynamics of
Jupiter’s and Earth’s atmospheres.
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